Soit $f$ une fonction définie et strictement croissante sur $\mathbb{R}_+^*$. On considère la fonction $g$ définie sur $\mathbb{R}_+^*$ par : $$g(x)=\frac{f(x)}{x}$$   1. Soit $\alpha$ un réel strictement positif. Montrer que : $$\forall x\in\mathbb{R}_+^*-\{\alpha\}\,,\qquad\frac{g(x)-g(\alpha)}{x-\alpha}=\frac{1}{x}\times\frac{f(x)-f(\alpha)}{x-\alpha}-\frac{f(\alpha)}{\alpha\,x}$$   2. En déduire que si $g$ est décroissante sur $\mathbb{R}_+^*$, alors $f$ est continue sur $\mathbb{R}_+^*$.   FIN Vous trouverez dans cet onglet […]

Lire la suite →

À travers cette série d’exercices sur le calcul de limites, j’essaie de proposer un panorama des différentes formes indéterminées auxquelles vous serez confrontées en classe de terminale, et de vous donner les différentes techniques à maîtriser pour lever ces indéterminations : Expression conjuguée pour les limites faisant intervenir des sommes de racines carrées, le taux d’accroissement ou […]

Lire la suite →

Cet exercice réunit quelques-unes des notions importantes en ce début d’année scolaire : Calcul de limites, notion de continuité et la fonction partie entière. Il est particulièrement intéressant dans la mesure où il vous amène à mettre en oeuvre la méthode de l’encadrement, souvent utilisée dans les calculs de limites avec partie entière. Le résultat de la […]

Lire la suite →

L’objectif de cet exercice est de vous donner une méthodologie pour calculer ce type de limite avec partie entière. L’exercice contient beaucoup de technicité. J’ai essayé de structurer le raisonnement de sorte à ce que vous puissiez réutiliser cette méthodologie pour d’autres exercices de limite avec partie entière. Le plus important à mon sens et […]

Lire la suite →

Tout d’abord, pardon pour cette longue absence. Durant ces quinze derniers jours, j’étais très occupé par mon travail quotidien. La rentrée est synonyme de lancement de nouveaux projets dans les entreprises Je reprends le fil et je propose cet exercice qui consiste à calculer une limite avec partie entière.   RAPPELS : La partie entière (par […]

Lire la suite →

Partie I Soit $n$ un entier naturel. On considère la suite $\displaystyle (u_n)_{n\in\mathbb{N}}$ définie par :   $u_0=1$, $u_1=1$ et pour tout $n$ dans $\mathbb{N}$ par $\displaystyle u_{n+2}=u_{n+1}+u_n$   1. Montrer que $u_n\in\mathbb{N}^*$. 2. Montrer que pour tout entier naturel $n\geq 1$, on a : $u_n\geq n$. Justifier que ce résultat est vrai pour tout $n$ […]

Lire la suite →

On considère la fonction $f$ définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\left(x+\frac{1}{x}\right)e^{-\frac{1}{x^{2}}} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathscr{C}_{f}$ sa courbe représentative dans un repère orthonormé $\left(O\,,\,\vec{i}\,,\,\vec{j}\right)$. Voici quelques valeurs utiles si vous ne souhaitez pas utiliser votre calculatrice : $\sqrt{\frac{2}{3}}\sim 0,8$, $\frac{5}{\sqrt{6}}\sim 0,5$ et $e^{-\frac{3}{2}}\sim 0,22$ PARTIE I 1. Montrer que $f$ est continue […]

Lire la suite →

On considère la fonction $f$ définie sur $[0\,,\,+\infty [$ par : $$f(x)=\begin{cases}\frac{x}{\ln(1+x)} \,\,\,\,\,&\text{Si}\,x>0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ Soit $n$ un entier naturel. On note $(u_{n})_{n\in\mathbb{N}}$ la suite définie par la relation de récurrence : $u_{0}=e$ et $\forall\,n\in\mathbb{N}\,,\qquad u_{n+1}=f(u_{n})$ 1. Déterminer le signe de $f$ sur l’intervalle $[0\,,\,+\infty [$. 2. Montrer que pour tout entier naturel $n$, […]

Lire la suite →

Soit $f$ la fonction définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\frac{x}{e^{x}-1} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $C_{f}$ la courbe représentative de $f$ dans un repère orthonormal. Préambule 1. Étudier le signe de la fonction $g$ définie par : $$g:\,\begin{cases} \mathbb{R}\to\mathbb{R} & \\ x\mapsto (1-x)e^{x}-1& \end{cases}$$   2. Soient $\Delta_{1}\,$ et $\,\Delta_{2}$ les fonctions définies sur […]

Lire la suite →

$n$ est un entier naturel non nul. On considère la famille de fonctions $f_n$ définies sur l’intervalle $]-1\,,\,+\infty[$ par : $$f_n(x)=x^{n}\ln(1+x)$$ PARTIE I Cette partie est consacrée à l’étude de la famille des fonctions $f_n$. Soit $n\in \mathbb{N}^{*}$. On note $g_{n}$ la fonction définie sur $]-1\,,\,+\infty[$ par : $$g_{n}(x)=n\ln(1+x)+\frac{x}{1+x}$$ 1. Justifier la dérivabilité de $g_{n}$ sur […]

Lire la suite →