$n$ est un entier naturel non nul. L’objet de cet exercice est l’étude des racines de l’équation : $$(E_n)\,:\quad\ln(x)+x=n$$ À cet effet, on introduit la fonction $f$ de la variable réelle $x$ définie sur $\mathbb{R}_+^*$ par : $$f(x)=\ln(x)+x$$ Existence des racines de $(E_n)$ : 1. Etudier les variations de la fonction $f$. 2. Montrer que […]

Lire la suite →

Soit $a$ un réel strictement positif différent de $1$. Et soit $(u_n)$ la suite définie par $u_0=1$ et pour tout entier naturel $n$ par :   $$u_{n+1}=\frac{1}{2}\left(u_n+\frac{a}{u_n}\right)$$   1. Montrer que pour tout entier naturel $n$ supérieur ou égal à $1$, on a : $$u_n>\sqrt{a}$$   2. Montrer que la suite $(u_n)$ est strictement décroissante. […]

Lire la suite →

On considère la suite $\displaystyle (u_n)$ définie pour tout entier naturel $n$ différent de zéro par : $$u_n=\frac{2^n}{n!}$$ 1. Montrer que la suite $\displaystyle (u_n)$ est décroissante. 2. En déduire que $\displaystyle (u_n)$ est convergente. 3. Montrer que pour tout entier naturel $n$ supérieur ou égal à $2$, on a : $$2\times 3^{n-2}\leq n!$$ 4. En […]

Lire la suite →

Partie I Soit $t$ un réel. 1. En appliquant le théorème des accroissements finis à la fonction $\displaystyle t\mapsto e^{-t}$, montrer que pour tout réel $x$ strictement positif, il existe un réel $\theta$ dans l’intervalle $\displaystyle ]0\,,\,x[$ tel que : $$e^{\theta}=\frac{x}{1-e^{-x}}$$ 2. En déduire que pour tout réel $x$ strictement positif, on a : (a) […]

Lire la suite →

On considère la fonction $f$ définie sur $[0\,,\,+\infty [$ par : $$f(x)=\begin{cases}\frac{x}{\ln(1+x)} \,\,\,\,\,&\text{Si}\,x>0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ Soit $n$ un entier naturel. On note $(u_{n})_{n\in\mathbb{N}}$ la suite définie par la relation de récurrence : $u_{0}=e$ et $\forall\,n\in\mathbb{N}\,,\qquad u_{n+1}=f(u_{n})$ 1. Déterminer le signe de $f$ sur l’intervalle $[0\,,\,+\infty [$. 2. Montrer que pour tout entier naturel $n$, […]

Lire la suite →

$n$ est un entier naturel non nul. On considère la famille de fonctions $f_n$ définies sur l’intervalle $]-1\,,\,+\infty[$ par : $$f_n(x)=x^{n}\ln(1+x)$$ PARTIE I Cette partie est consacrée à l’étude de la famille des fonctions $f_n$. Soit $n\in \mathbb{N}^{*}$. On note $g_{n}$ la fonction définie sur $]-1\,,\,+\infty[$ par : $$g_{n}(x)=n\ln(1+x)+\frac{x}{1+x}$$ 1. Justifier la dérivabilité de $g_{n}$ sur […]

Lire la suite →