On considère la fonction $f$ définie sur $[0\,,\,+\infty [$ par : $$f(x)=\begin{cases}\frac{x}{\ln(1+x)} \,\,\,\,\,&\text{Si}\,x>0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ Soit $n$ un entier naturel. On note $(u_{n})_{n\in\mathbb{N}}$ la suite définie par la relation de récurrence : $u_{0}=e$ et $\forall\,n\in\mathbb{N}\,,\qquad u_{n+1}=f(u_{n})$ 1. Déterminer le signe de $f$ sur l’intervalle $[0\,,\,+\infty [$. 2. Montrer que pour tout entier naturel $n$, […]

Lire la suite →

Soit $f$ la fonction définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\frac{x}{e^{x}-1} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $C_{f}$ la courbe représentative de $f$ dans un repère orthonormal. Préambule 1. Étudier le signe de la fonction $g$ définie par : $$g:\,\begin{cases} \mathbb{R}\to\mathbb{R} & \\ x\mapsto (1-x)e^{x}-1& \end{cases}$$   2. Soient $\Delta_{1}\,$ et $\,\Delta_{2}$ les fonctions définies sur […]

Lire la suite →