Terminale S Etoile

Arctangente, étude de fonctions

Soit $f$ la fonction définie par : $$f(x)=\begin{cases}x\,\arctan\left(\frac{1}{x}\right) \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathcal{C}_f$ sa courbe représentative dans un repère orthonormé.   1. $f$ est-elle continue sur $\mathbb{R}$ ? 2. $f$ est-elle dérivable sur $\mathbb{R}$ ? 3. Déterminer la limite : $\displaystyle\lim_{x\to +\infty}f(x)$ 4. Montrer que pour tout réel $x$ strictement positif, on a …

Arctangente, étude de fonctions Lire la suite »

Autour de l’arctangente

Soit $f$ la fonction définie pour tout réel $x$ par : $$f(x)=\arctan\left(\sqrt{1+x^2}-x\right)$$   1. Sans étudier les variations de la fonction $f$, montrer que pour tout réel $x$, on a l’encadrement suivant : $$0<f(x)<\frac{\pi}{2}$$   2. Montrer que pour tout réel $x$, on a : $$1-\tan^2(f(x))=2x\tan(f(x))$$   3. En déduire que pour tout réel $x$ …

Autour de l’arctangente Lire la suite »

Limite avec partie entière

L’objectif de cet exercice est de vous donner une méthodologie pour calculer ce type de limite avec partie entière. L’exercice contient beaucoup de technicité. J’ai essayé de structurer le raisonnement de sorte à ce que vous puissiez réutiliser cette méthodologie pour d’autres exercices de limite avec partie entière. Le plus important à mon sens et …

Limite avec partie entière Lire la suite »

Suite de Fibonacci

Partie I Soit $n$ un entier naturel. On considère la suite $\displaystyle (u_n)_{n\in\mathbb{N}}$ définie par :   $u_0=1$, $u_1=1$ et pour tout $n$ dans $\mathbb{N}$ par $\displaystyle u_{n+2}=u_{n+1}+u_n$   1. Montrer que $u_n\in\mathbb{N}^*$. 2. Montrer que pour tout entier naturel $n\geq 1$, on a : $u_n\geq n$. Justifier que ce résultat est vrai pour tout $n$ …

Suite de Fibonacci Lire la suite »

Exponentielle, TAF, fonction définie par une intégrale

On considère la fonction $f$ définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\left(x+\frac{1}{x}\right)e^{-\frac{1}{x^{2}}} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathscr{C}_{f}$ sa courbe représentative dans un repère orthonormé $\left(O\,,\,\vec{i}\,,\,\vec{j}\right)$. Voici quelques valeurs utiles si vous ne souhaitez pas utiliser votre calculatrice : $\sqrt{\frac{2}{3}}\sim 0,8$, $\frac{5}{\sqrt{6}}\sim 0,5$ et $e^{-\frac{3}{2}}\sim 0,22$ PARTIE I 1. Montrer que $f$ est continue …

Exponentielle, TAF, fonction définie par une intégrale Lire la suite »

Fonctions, suite récurrente, primitive

Soit $f$ la fonction définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\frac{x}{e^{x}-1} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $C_{f}$ la courbe représentative de $f$ dans un repère orthonormal. Préambule 1. Étudier le signe de la fonction $g$ définie par : $$g:\,\begin{cases} \mathbb{R}\to\mathbb{R} & \\ x\mapsto (1-x)e^{x}-1& \end{cases}$$   2. Soient $\Delta_{1}\,$ et $\,\Delta_{2}$ les fonctions définies sur …

Fonctions, suite récurrente, primitive Lire la suite »

Retour en haut