Limites, partie entière
Soit $f$ la fonction définie sur l’intervalle $[1\,,\,+\infty [$ par : $$f(x)=x^2\,\sin\left(\frac{E(x)}{x^2}\right)$$ 1. Vérifier que $f$ est bien définie sur l’intervalle $[1\,,\,+\infty [$. 2. Montrer que : $\displaystyle\lim_{x\to +\infty}E(x)=+\infty$. 3. Montrer que : $\displaystyle\lim_{x\to +\infty}\frac{E(x)}{x^2}=0$. 4. En déduire la valeur de la limite : $\displaystyle\lim_{x\to +\infty}f(x)$. FIN Vous trouverez dans cet onglet des indications …