Soit $f$ la fonction définie par : $$f(x)=\begin{cases}x\,\arctan\left(\frac{1}{x}\right) \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathcal{C}_f$ sa courbe représentative dans un repère orthonormé.   1. $f$ est-elle continue sur $\mathbb{R}$ ? 2. $f$ est-elle dérivable sur $\mathbb{R}$ ? 3. Déterminer la limite : $\displaystyle\lim_{x\to +\infty}f(x)$ 4. Montrer que pour tout réel $x$ strictement positif, on a […]

Lire la suite →

Soit $f$ la fonction définie pour tout réel $x$ par : $$f(x)=\arctan\left(\sqrt{1+x^2}-x\right)$$   1. Sans étudier les variations de la fonction $f$, montrer que pour tout réel $x$, on a l’encadrement suivant : $$0<f(x)<\frac{\pi}{2}$$   2. Montrer que pour tout réel $x$, on a : $$1-\tan^2(f(x))=2x\tan(f(x))$$   3. En déduire que pour tout réel $x$ […]

Lire la suite →

L’objectif de cet exercice est de vous donner une méthodologie pour calculer ce type de limite avec partie entière. L’exercice contient beaucoup de technicité. J’ai essayé de structurer le raisonnement de sorte à ce que vous puissiez réutiliser cette méthodologie pour d’autres exercices de limite avec partie entière. Le plus important à mon sens et […]

Lire la suite →

Partie I Soit $n$ un entier naturel. On considère la suite $\displaystyle (u_n)_{n\in\mathbb{N}}$ définie par :   $u_0=1$, $u_1=1$ et pour tout $n$ dans $\mathbb{N}$ par $\displaystyle u_{n+2}=u_{n+1}+u_n$   1. Montrer que $u_n\in\mathbb{N}^*$. 2. Montrer que pour tout entier naturel $n\geq 1$, on a : $u_n\geq n$. Justifier que ce résultat est vrai pour tout $n$ […]

Lire la suite →

On considère la fonction $f$ définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\left(x+\frac{1}{x}\right)e^{-\frac{1}{x^{2}}} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathscr{C}_{f}$ sa courbe représentative dans un repère orthonormé $\left(O\,,\,\vec{i}\,,\,\vec{j}\right)$. Voici quelques valeurs utiles si vous ne souhaitez pas utiliser votre calculatrice : $\sqrt{\frac{2}{3}}\sim 0,8$, $\frac{5}{\sqrt{6}}\sim 0,5$ et $e^{-\frac{3}{2}}\sim 0,22$ PARTIE I 1. Montrer que $f$ est continue […]

Lire la suite →

Soit $f$ la fonction définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\frac{x}{e^{x}-1} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $C_{f}$ la courbe représentative de $f$ dans un repère orthonormal. Préambule 1. Étudier le signe de la fonction $g$ définie par : $$g:\,\begin{cases} \mathbb{R}\to\mathbb{R} & \\ x\mapsto (1-x)e^{x}-1& \end{cases}$$   2. Soient $\Delta_{1}\,$ et $\,\Delta_{2}$ les fonctions définies sur […]

Lire la suite →