Théorème des valeurs intermédiaires, continuité
Soient $a$ et $b$ deux réels tels que $a\neq b$ et $f$ l’application de $\displaystyle [a\,;\,b]$ dans $\displaystyle [a\,;\,b]$ définie par : $$\begin{cases}f\left([a\,;\,b]\subset [a\,;\,b]\right)\\\\\forall (x\,;\,y)\in [a\,;\,b]\times [a\,;\,b]\,,\quad|f(x)-f(y)|<|x-y|\end{cases}$$ 1. Montrer que $f$ est continue sur $\displaystyle [a\,;\,b]$. 2. Soit $g$ la fonction définie pour tout réel $x$ de $\displaystyle [a\,;\,b]$ par : $$g(x)=f(x)-x$$ 2.1 …
Théorème des valeurs intermédiaires, continuité Lire la suite »