Analyse

Autour de l’exponentielle, Suites adjacentes

$n$ est un entier naturel et $x$ un réel supérieur ou égal à zéro. On considère les deux suites $(u_n)$ et $(v_n)$ définies pour tout entier naturel $n$ et pour tout réel $x$ supérieur ou égal à zéro par :   $\displaystyle u_n(x)=1+\frac{x}{1!}+\frac{x^2}{2!}+\cdots +\frac{x^n}{n!}$ et $\displaystyle v_n(x)=u_n(x)+\frac{x^n}{n!}$   PARTIE I 1. Donner les valeurs de […]

Autour de l’exponentielle, Suites adjacentes Lire la suite »

Suites, LN, Bijection, Résolution d’une équation

$n$ est un entier naturel non nul. L’objet de cet exercice est l’étude des racines de l’équation : $$(E_n)\,:\quad\ln(x)+x=n$$ À cet effet, on introduit la fonction $f$ de la variable réelle $x$ définie sur $\mathbb{R}_+^*$ par : $$f(x)=\ln(x)+x$$ Existence des racines de $(E_n)$ : 1. Etudier les variations de la fonction $f$. 2. Montrer que

Suites, LN, Bijection, Résolution d’une équation Lire la suite »

Limite d’une suite, monotonie, point fixe, convergence

Soit $a$ un réel strictement positif différent de $1$. Et soit $(u_n)$ la suite définie par $u_0=1$ et pour tout entier naturel $n$ par :   $$u_{n+1}=\frac{1}{2}\left(u_n+\frac{a}{u_n}\right)$$   1. Montrer que pour tout entier naturel $n$ supérieur ou égal à $1$, on a : $$u_n>\sqrt{a}$$   2. Montrer que la suite $(u_n)$ est strictement décroissante.

Limite d’une suite, monotonie, point fixe, convergence Lire la suite »

Une limite classique, suites, factorielle

On considère la suite $\displaystyle (u_n)$ définie pour tout entier naturel $n$ différent de zéro par : $$u_n=\frac{2^n}{n!}$$ 1. Montrer que la suite $\displaystyle (u_n)$ est décroissante. 2. En déduire que $\displaystyle (u_n)$ est convergente. 3. Montrer que pour tout entier naturel $n$ supérieur ou égal à $2$, on a : $$2\times 3^{n-2}\leq n!$$ 4. En

Une limite classique, suites, factorielle Lire la suite »

Suites, factorielle, inégalités, monotonie

On considère la suite $(u_n)$ définie pour tout entier naturel $n$ supérieur ou égal à $2$ par : $$u_n=\frac{n^{n+1}}{2^n\,n!}$$   1. Montrer que pour tout $n$ dans $\mathbb{N}^*$, on a : $$\left(1+\frac{1}{n}\right)^{n+1}>2$$   2. En déduire que la suite $(u_n)$ est strictement croissante. 3. Montrer que pour tout entier naturel $n$ supérieur ou égal à $2$,

Suites, factorielle, inégalités, monotonie Lire la suite »

Théorème des valeurs intermédiaires, continuité

Soient $a$ et $b$ deux réels tels que $a\neq b$ et $f$ l’application de $\displaystyle [a\,;\,b]$ dans $\displaystyle [a\,;\,b]$ définie par :   $$\begin{cases}f\left([a\,;\,b]\subset [a\,;\,b]\right)\\\\\forall (x\,;\,y)\in [a\,;\,b]\times [a\,;\,b]\,,\quad|f(x)-f(y)|<|x-y|\end{cases}$$   1. Montrer que $f$ est continue sur $\displaystyle [a\,;\,b]$. 2. Soit $g$ la fonction définie pour tout réel $x$ de $\displaystyle [a\,;\,b]$ par : $$g(x)=f(x)-x$$ 2.1

Théorème des valeurs intermédiaires, continuité Lire la suite »

Autour de l’arctangente

Soit $f$ la fonction définie pour tout réel $x$ par : $$f(x)=\arctan\left(\sqrt{1+x^2}-x\right)$$   1. Sans étudier les variations de la fonction $f$, montrer que pour tout réel $x$, on a l’encadrement suivant : $$0<f(x)<\frac{\pi}{2}$$   2. Montrer que pour tout réel $x$, on a : $$1-\tan^2(f(x))=2x\tan(f(x))$$   3. En déduire que pour tout réel $x$

Autour de l’arctangente Lire la suite »

Équation fonctionnelle, continuité

Soient $x$ et $y$ deux réels strictement positifs, et $f$ la fonction définie sur l’intervalle $]0\,,\,+\infty[$ par :   $$\begin{cases}f(xy)=f(x)+f(y)\\\\f \text{ est continue au point } x_0=1\end{cases}$$   1. Calculer $f(1)$. 2. Soit $\alpha$ un réel strictement positif. 2.1 Montrer que pour tout réel $x$ strictement positif, on a : $$f(x)=f\left(\frac{x}{\alpha}\right)+f(\alpha)$$ 2.2 Calculer la limite

Équation fonctionnelle, continuité Lire la suite »

Théorème des valeurs intermédiaires, sens de variation

Soit $n$ un entier naturel supérieur ou égal à $2$. On considère la fonction $f$ définie par : $$f(x)=x^{n+1}-2x^n+1$$   1. Montrer que $f$ est strictement décroissante sur l’intervalle $\displaystyle\left[0\,;\,\frac{2n}{n+1}\right]$. 2. En déduire que $f\left(\frac{2n}{n+1}\right)<0$. 3. Montrer qu’il existe un réel $\alpha$ dans l’intervalle $\displaystyle\left[\frac{2n}{n+1}\,;\,2\right]$ tel que $f(\alpha)=0$.   FIN Vous trouverez dans cet onglet

Théorème des valeurs intermédiaires, sens de variation Lire la suite »

Limites, partie entière

Soit $f$ la fonction définie sur l’intervalle $[1\,,\,+\infty [$ par : $$f(x)=x^2\,\sin\left(\frac{E(x)}{x^2}\right)$$   1. Vérifier que $f$ est bien définie sur l’intervalle $[1\,,\,+\infty [$. 2. Montrer que : $\displaystyle\lim_{x\to +\infty}E(x)=+\infty$. 3. Montrer que : $\displaystyle\lim_{x\to +\infty}\frac{E(x)}{x^2}=0$. 4. En déduire la valeur de la limite : $\displaystyle\lim_{x\to +\infty}f(x)$.   FIN Vous trouverez dans cet onglet des indications

Limites, partie entière Lire la suite »

Limites et continuité

Soit $f$ une fonction définie et strictement croissante sur $\mathbb{R}_+^*$. On considère la fonction $g$ définie sur $\mathbb{R}_+^*$ par : $$g(x)=\frac{f(x)}{x}$$   1. Soit $\alpha$ un réel strictement positif. Montrer que : $$\forall x\in\mathbb{R}_+^*-\{\alpha\}\,,\qquad\frac{g(x)-g(\alpha)}{x-\alpha}=\frac{1}{x}\times\frac{f(x)-f(\alpha)}{x-\alpha}-\frac{f(\alpha)}{\alpha\,x}$$   2. En déduire que si $g$ est décroissante sur $\mathbb{R}_+^*$, alors $f$ est continue sur $\mathbb{R}_+^*$.   FIN Vous trouverez dans cet onglet

Limites et continuité Lire la suite »

Calcul de limites, TSM, Série d’exercices N°1

À travers cette série d’exercices sur le calcul de limites, j’essaie de proposer un panorama des différentes formes indéterminées auxquelles vous serez confrontées en classe de terminale, et de vous donner les différentes techniques à maîtriser pour lever ces indéterminations : Expression conjuguée pour les limites faisant intervenir des sommes de racines carrées, le taux d’accroissement ou

Calcul de limites, TSM, Série d’exercices N°1 Lire la suite »

Retour en haut