BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Analyse

On note $I$ l’intervalle $]0\,,\,+\infty[$ et on considère la fonction $F$ définie sur $I$ par : $$F(x)=\int_{\ln(2)}^{x}\frac{dt}{\sqrt{e^t-1}}$$ 1.a. Etudier le signe de $F(x)$ pour tout réel $x$ dans $I$. 1.b. Montrer que $F$ est dérivable sur $I$ et donner l’expression de $F^{\prime}(x)$ pour tout réel $x$ dans $I$. 1.c. Montrer que $F$ est strictement croissante […]

BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Analyse Lire la suite »

BAC Sciences Math (Maroc, Juin 2016) – Problème d’Analyse

Partie I Soit $t$ un réel. 1. En appliquant le théorème des accroissements finis à la fonction $\displaystyle t\mapsto e^{-t}$, montrer que pour tout réel $x$ strictement positif, il existe un réel $\theta$ dans l’intervalle $\displaystyle ]0\,,\,x[$ tel que : $$e^{\theta}=\frac{x}{1-e^{-x}}$$ 2. En déduire que pour tout réel $x$ strictement positif, on a : (a)

BAC Sciences Math (Maroc, Juin 2016) – Problème d’Analyse Lire la suite »

BAC Sciences Math (Maroc, Juin 2016) – Exercice sur les Complexes

Le plan complexe est muni d’un repère orthonormé direct $\displaystyle (O\,,\,\vec{u}\,,\,\vec{v}\,)$. On considère les points $M_1$ et $M_2$ du plan complexe de sorte que les points $O$, $M_1$ et $M_2$ soient deux à deux distincts et non alignés. Soient $z_1$ l’affixe du point $M_1$, $z_2$ l’affixe du point $M_2$ et $z$ l’affixe du point $M$

BAC Sciences Math (Maroc, Juin 2016) – Exercice sur les Complexes Lire la suite »

BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Arithmétique

Partie I Soient $a$ et $b$ deux entiers naturels non nuls, tels que $a^3+b^3$ est divisible par $173$. On notera que $173$ est un nombre premier. 1. Montrer que $a^{171}\equiv -b^{171}\quad [173]$. (On remarquera que $171=3\times 57$). 2. Montrer que $a$ est divisible par $173$ si et seulement si $b$ est divisible par $173$. 3.

BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Arithmétique Lire la suite »

BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Algèbre

On rappelle que $\displaystyle\big(\mathcal{M}_3(\mathbb{R}),+,\times\big)$ est un anneau unitaire. $\displaystyle\mathtt{I}=\left(\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix}\right)$ est l’élément unité de $\displaystyle\mathcal{M}_3(\mathbb{R})$. Et $\displaystyle\big(\mathcal{M}_3(\mathbb{C}),+,\times\big)$ est un corps commutatif. Pour tout tout $(x,y)\in\mathbb{R}^2$, on pose : $$M(x,y)=\left(\begin{matrix} x+y & 0 & -2y \\ 0 & 0 &

BAC Sciences Math (Maroc, Juin 2016) – Exercice d’Algèbre Lire la suite »

Exponentielle, TAF, fonction définie par une intégrale

On considère la fonction $f$ définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\left(x+\frac{1}{x}\right)e^{-\frac{1}{x^{2}}} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 0\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $\mathscr{C}_{f}$ sa courbe représentative dans un repère orthonormé $\left(O\,,\,\vec{i}\,,\,\vec{j}\right)$. Voici quelques valeurs utiles si vous ne souhaitez pas utiliser votre calculatrice : $\sqrt{\frac{2}{3}}\sim 0,8$, $\frac{5}{\sqrt{6}}\sim 0,5$ et $e^{-\frac{3}{2}}\sim 0,22$ PARTIE I 1. Montrer que $f$ est continue

Exponentielle, TAF, fonction définie par une intégrale Lire la suite »

Étude d’une suite définie par une relation de récurrence

On considère la fonction $f$ définie sur $[0\,,\,+\infty [$ par : $$f(x)=\begin{cases}\frac{x}{\ln(1+x)} \,\,\,\,\,&\text{Si}\,x>0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ Soit $n$ un entier naturel. On note $(u_{n})_{n\in\mathbb{N}}$ la suite définie par la relation de récurrence : $u_{0}=e$ et $\forall\,n\in\mathbb{N}\,,\qquad u_{n+1}=f(u_{n})$ 1. Déterminer le signe de $f$ sur l’intervalle $[0\,,\,+\infty [$. 2. Montrer que pour tout entier naturel $n$,

Étude d’une suite définie par une relation de récurrence Lire la suite »

Fonctions, suite récurrente, primitive

Soit $f$ la fonction définie sur $\mathbb{R}$ par : $$f(x)=\begin{cases}\frac{x}{e^{x}-1} \,\,\,\,\,&\text{Si}\,x\neq 0\\ 1\,\qquad &\text{Si}\,x=0 \end{cases}$$ On note $C_{f}$ la courbe représentative de $f$ dans un repère orthonormal. Préambule 1. Étudier le signe de la fonction $g$ définie par : $$g:\,\begin{cases} \mathbb{R}\to\mathbb{R} & \\ x\mapsto (1-x)e^{x}-1& \end{cases}$$   2. Soient $\Delta_{1}\,$ et $\,\Delta_{2}$ les fonctions définies sur

Fonctions, suite récurrente, primitive Lire la suite »

Famille de fonctions, suite définie à l’aide d’une intégrale

$n$ est un entier naturel non nul. On considère la famille de fonctions $f_n$ définies sur l’intervalle $]-1\,,\,+\infty[$ par : $$f_n(x)=x^{n}\ln(1+x)$$ PARTIE I Cette partie est consacrée à l’étude de la famille des fonctions $f_n$. Soit $n\in \mathbb{N}^{*}$. On note $g_{n}$ la fonction définie sur $]-1\,,\,+\infty[$ par : $$g_{n}(x)=n\ln(1+x)+\frac{x}{1+x}$$ 1. Justifier la dérivabilité de $g_{n}$ sur

Famille de fonctions, suite définie à l’aide d’une intégrale Lire la suite »

Retour en haut